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Abstract- This paper presents a calibration and measurement method for circuits embedded

in lossy printed multiconductor transmission lines. The experimental results illustrate the

complexity of the modal representation and the utility of the conductor representation for

circuit design.

INTRODUCTION

This paper presents a method based on the procedure of [1] for measuring the impedance matrices

of one-port circuits embedded in multiconductor transmission lines. The method determines both the

modal and the “power-normalized” conductor impedance matrices of [2] and [3] describing the

embedded device. We use a simple resistive circuit embedded in a pair of lossy asymmetric coupled

microstrip lines to illustrate the method.

We use the procedure of [1] to characterize the multiconductor transmission line in which the

device is embedded. That procedure applies the ZHLJKWHG RUWKRJRQDO GLVWDQFH UHJUHVVLRQ algorithm

of [4] to find the matrices of transmission line impedances and admittances per unit length that best

reproduce a number of two-port scattering-parameter measurements performed on multiple lengths

of a multiconductor transmission line. The procedure of [1] can determine all of the conductor

parameters of the line without making any assumptions: this verifies that the line’s conductor

impedance matrix G  is small, its conductor capacitance matrix C  is symmetric and nearly frequencyc       c
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independent, and its resistance and inductance matrices R  and L  are symmetric, assumptions that wec  c

checked with the full-wave calculation method of [5].

Accuracy is improved by setting G  to 0 and all of the other matrices symmetric, which reducesc

the number of variables that must be determined by the algorithm. We repeated the optimization with

these assumptions to determine the low-frequency limit of C  and then with C  set to this low-c    c

frequency limit to determine R  and L . At this final stage of the analysis we can also add a reciprocalc  c

error box to the model to account for transition parasitics.

In this work we use the electrical model of the multiconductor transmission line determined by

this procedure to de-embed the electrical parameters of circuits embedded in the line. Since the

method of [1] determines both modal and conductor representations for the line, we are able to

determine both the modal and conductor impedance matrices describing the embedded device.

MODAL REPRESENTATION

The total transverse electric field E  and magnetic field H  in a closed transmission line that ist    t

uniform in z and constructed of linear isotropic materials can be written as [6]

���

where v  and i  are the modal voltages and currents of the nth mode, e  and h  are its transversemn  mn           tn  tn

modal electric and magnetic fields (functions only of the transverse coordinates x and y), the sums

span all of the excited modes in the line, and the time-harmonic dependence e , where 7 is the real+j7t

angular frequency, has been suppressed. In open guides we must add a continuous spectrum of modes

to this discrete set [7], which we assume that we can neglect.

We restrict the normalizing voltages v  and currents i  by , where0n   0n

Re(p )�0 so that the complex power carried in the forward direction by the nth forward and0n

backward modes in the absence of any other modes in the guide is given by v  i . This is themn nm
*

conventional normalization and corresponds to the power condition used in [1], [2], and [8] and
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suggested by Brews [9]. The characteristic impedance of the nth mode is Z  � v /i = 
v 
 /p  =0n  0n 0n  0n 0n
2 *

p /
i 
 ; its magnitude is fixed by the choice of 
v 
 or 
i 
 while its phase is fixed by p .0n 0n          0n   0n        0n
2

When a finite number of discrete modes are excited in the line, the total complex power p carried

in the forward direction is

���

where the superscript † indicates the Hermitian adjoint (conjugate transpose), the elements of the

cross-power matrix X are defined by , X  = 1, and the integrals arenn

performed over the entire transmission-line cross section [1]. Choosing  ensures that 

when only the nth forward and backward modes are excited in the line [8]. Likewise choosing

 ensures that . The modal impedance matrix Z  of a linear one-port devicem

embedded in the line relates v  and i  by v  = Z  i .m  m  m  m m

To illustrate the behavior of the modal impedance matrix we applied the procedure of [1] to two

asymmetric coupled microstrip lines with widths of 54 µm and 254 µm separated by a gap of 45 µm

printed on an alumina substrate with an approximate thickness of 254 µm. The conductor

metalization had a measured thickness of 1.8 µm and measured dc conductivity of 3.3x10  6 #m .7 -1 -1

We used the transmission line model to de-embed the modal impedance matrix of two small planar

resistors connected between the two conductors of the line and the ground plane on the back of the

substrate with via holes from measurements of the circuit embedded in the coupled microstrip lines.

As in [1] we defined the voltage path for the c mode, which corresponds to the even mode of a

symmetric microstrip line, to be between the 254 µm wide microstrip conductor and the ground plane

on the back of the substrate; we defined the voltage path for the % mode, which corresponds to the

odd mode of a symmetric microstrip line, to be between the 254 µm and 54 µm wide microstrip

conductors.
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Figure 1. The real part of the elements of the modal impedance matrix Z  and the conductor impedance matrixm

Z  for two small resistors connected between the two conductors of a pair of asymmetric microstrip lines andc

the ground plane on the back of the substrate. The connections of the resistors are sketched in the lower right

of the figure.

Figure 1 plots in dashed lines the real parts of the elements of the modal impedance matrix of the

small circuit. The figure shows that the elements of Z  are highly frequency dependent. This illustratesm

a serious drawback of the modal impedance matrix: its elements do not correspond to the impedances

anticipated from simple physical models [10] despite the small size and lumped nature of the circuit.

Circuit design in this modal representation is difficult not only because the impedance matrices do not

correspond to anticipated circuit behavior, but also because the complex power is not equal to

.
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Figure 2. The magnitude of the ratios of the voltages impressed by the c and % modes between the 54 µm wide

microstrip conductor and the ground (v ) and the 254 µm wide microstrip conductor and the ground (v ).c1            c2

Figure 2 shows calculations of the ratio of the voltages impressed by the c and % modes between

the two conductors and their grounds using the full-wave method of [5]; for the calculations we

assumed that the substrate had a dielectric constant of 10 and was lossless. The figure shows that

these ratios are not constant: they, and therefore the modal field configurations, change significantly

near the peak in the off-diagonal elements of X. This explains the frequency dependence of Z , whichm

reflects this complex modal behavior.
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CONDUCTOR REPRESENTATION

Every excited mode in a multiconductor transmission line impresses a voltage across each of its

conductors, so the total voltage between any given pair of its conductors is a linear combination of

all of the modal voltages of the excited modes. Likewise the total current in any given conductor will

be a linear combination of the modal currents. References [2] and [3] refer to these linear

combinations of modal voltages and currents as the “conductor” voltages and currents.

The vectors of conductor voltages v  and currents i  of [2] and [3] are defined by  c   c

and , where M  and M  are unitless. The vectors v  and i  are “power-normalized” in [2]v  i     c  c

and [3] so that : this requires that M  and M  satisfy . The conductor impedancev  i

matrix Z  of a one-port device embedded in a line relates v  and i  by v  = Z  i .c          c  c  c  c c

As in [1] we defined the voltage paths for v  and v  to be between the 54 µm and the 254 µmc1  c2

wide microstrip conductors, respectively, and the ground plane; these paths also correspond to the

connection paths of our two resistors. Figure 1 plots the real parts of the elements of the conductor

impedance matrix Z  of the circuit in solid lines for this choice of paths. The figure shows that the realc

parts of the elements of Z  are nearly constant with frequency and correspond closely to the measuredc

dc resistances of the two small resistors, as we would expect from simple physical considerations

[10]. We found that the imaginary parts of the elements of Z  increased linearly from 0 with frequencyc

and again correspond to behavior we would anticipate from physical considerations. In addition, since

v  and i  are power normalized, the conductor impedance matrices can be used directly inc   c

conventional circuit simulators to predict circuit response and power flow [2].

CONCLUSION

We presented a method for the measurement of one-port circuits embedded in lossy asymmetric

printed multiconductor transmission lines. The method illustrates the complexity of the modal

representation and the advantages of using the power-normalized conductor representations of [2]

and [3] in circuit design. The method makes possible fully corrected calibrations and measurements

in lossy multiconductor transmission lines.
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�����
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QRQOLQHDU RUWKRJRQDO GLVWDQFH UHJUHVVLRQ�µ 6,$0 -� 6FL� DQG 6WDW� &RPS�� SS� ����������

1RY� �����

The elements of Z  do not correspond to the anticipated behavior of the circuit solely because thec

voltage paths used to define v  and v  correspond to those connecting the resistors, but also becausec1  c2

v  and i  are power normalized so that . This power normalization must account for the off-c  c

diagonal elements of X, which become significant when the modal propagation constants approach

each other [11], and requires complex frequency dependent matrices  M  and M . This shows thatv  i

theories that assume real frequency independent relations between these quantities will fail in lossy

asymmetric coupled microstrip lines.

In the asymmetric microstrip lines studied here the power-normalized representation of [2] and

[3] and the reciprocity-based representation of [12] are nearly identical [2]; our results cannot be used

to show that either one of these representations is preferable. Although not demonstrated here, the

calibration method is also applicable to transmission lines with more than three conductors.
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